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Abstract
The highly asymmetrical primitive model of colloid–counterion mixtures is
solved using the advanced integral equation proposed by Barrat et al (Barrat J L,
Hansen J P and Pastore G 1988 Mol. Phys. 63 747–67). The approximate bridge
functions are expressed in terms of three-particle direct correlation functions,
themselves derived from a factorization ansatz and thermodynamical relations.
Comparisons with the bare HNC and previous improved closures as well as with
recent Monte Carlo simulation data illustrate the efficiency of this equation for
the precise determination of the structural and equilibrium properties of highly
charged colloidal systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The equilibrium and structural properties of spherical polyelectrolytes such as numerous
charged colloidal, micellar or biological solutions are governed by complex electrostatic
interactions. The simultaneous presence, required by the electroneutrality condition, of
highly charged colloids (polyions) and small oppositely and like-charged ions (counterions
and coions), the infinite range of the direct coulombic potentials and the existence of ++
and −− repulsions and +− attractions induce strong and non-additive couplings inside the
solution [1]. Within the standard ‘DLVO’ picture based on a Debye–Hückel analysis, the
role of the ions is to form a double layer around each colloid and to screen the repulsive
interaction between polyions at large separation [2]. An additional short-range effect concerns
the counterions which accumulate in the vicinity of the charged surfaces and reduce the value
of the effective macroion charge (ionic condensation) [3]. This mean-field picture, valid at low
to intermediate coupling, breaks down at high coulombic coupling, especially in the presence
of multivalent counterions. In this regime, ion–ion correlations occur in the medium separating
colloids and have a dramatic effect on the effective interaction between approaching polyions
and on the stability of the solution. An attraction of pure electrostatic origin may appear in
the ion-averaged pair potential, in contradiction with the DLVO view. A correct prediction
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and description of this phenomenon requires a careful resolution of the so-called primitive
model (PM). The PM neglects the discrete nature of the polar solvent and considers mixtures
of charged hard or soft spheres immersed in a continuous dielectric solvent (no electrostatic
images, van der Waals and hydration forces). It makes no a priori assumptions on the ionic
fluid and treats explicitly and on an equal footing large colloids and small ions, as in an
asymmetrical electrolyte.

Exact resolutions of the PM of colloidal systems are obtained by numerical Monte Carlo
(MC), molecular or Brownian dynamics simulation. Such studies face the intrinsic problems
of highly charged systems: the 1/r long-range coulombic potential implies the use of time-
consuming Ewald summation techniques, the electroneutrality condition multiplies the total
number of particles and the ionic condensation of counterions around each colloid requires the
use of very small colloidal displacements or time steps. The situation is somewhat simplified
in the case of micrometric particles, of size much larger than the screening and condensation
lengths. In this particular case, the colloids interact only by pairs and, using the standard
Derjaguin transformation, it is sufficient to solve the equivalent problem of two parallel, charged
walls separated by a simple electrolyte [4]. Numerous simulation data and theories have shown
since the mid-1980s how the Gouy–Chapman, Poisson–Boltzmann pure repulsion between the
walls is replaced by a short-range attraction at high coupling [5]. The situation is much more
difficult in the nanometric domain, as in micellar or protein systems, where the typical ranges
of interaction (Debye screening length, condensation thickness) are not negligible compared
with the macroion size and with the mean distance between macroions. This is especially
true in salt-free solutions, where the single contribution to the ionic strength originates from
the counterions and the screening is concentration dependent. In this case, the ion-mediated
colloidal interactions become of N-body nature and one cannot avoid simulating the full
binary PM at finite colloidal density. The intrinsic difficulties recalled above explain why
only moderate charge asymmetries of 1/−12 to 2/−20 have been published in the literature
since the first MC data in 1982 [6–10], with a few exceptions of 1/−60 to 3/−60 in recent
years [11]. An alternative to the general PM simulation in bulk is offered by the cell approach,
where only two colloids and their ions are simulated in a cell [12]. The colloidal density is
implicitly imposed by the cell size and the force felt by both colloids is recorded at different
separations. Provided that the separation is much lower than the cell size, this simplified and
less complete type of simulation gives information on the colloidal potential of mean force.
Both types of simulation, bulk and cell, predict DLVO-like repulsions for monovalent ions
and attractions for higher ionic valences. A colloidal aggregation and a destabilization of the
solution associated with this attraction are even observed in bulk simulation [13]. Figure 1
shows typical examples of MC snapshots and force–distance curves for 1/−60 and 2/−60
systems in the cell geometry. In the monovalent case, the entropy of the numerous free ions
guarantees a pure repulsion between colloids. In the divalent case, structures in the two
interacting condensation shells appear and strong ion–ion correlations induce attraction at
intermediate separation.

Since the PM of bulk colloidal systems is difficult to solve by simulation, there is a need for
accurate theories of liquid such as those based on integral equations [14]. The HNC closure,
well suited to coulombic systems, is known to predict at finite density and high electrostatic
coupling an instability of the PM with respect to liquid–gas phase transition [15, 16]. This
phenomenon is illustrated in terms of attractive ion-averaged potential between colloids [1, 17].
Numerous comparisons between HNC results and simulation data, from the restricted PM of a
symmetrical electrolyte [18] up to the planar double-layer limit [19], indicate that the general
trend of the bulk HNC theory is to overestimate the non-mean-field behaviour and to predict the
existence of the attraction at too low coupling. Moreover, the HNC equation is characterized
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Figure 1. MC force versus separation between two colloids of charge 60 and diameter 40 Å in
the cell geometry. Hard-wall cell; no periodic images. T = 298 K, ε = 78.4, σc = 4 Å, volume
fraction 0.84%. The insets show typical MC snapshots. Monovalent and divalent counterions.

by a thermodynamical inconsistency between the compressibility and virial routes for the
pressure [15]. Different directions have been followed in order to improve the bare HNC
equation for the asymmetrical PM and to introduce in some approximate ways the so-called
bridge function, missing from HNC. Zerah and Hansen (ZH) have proposed a mixed integral
equation, which interpolates between HNC at large distances and SMSA (PY for repulsive
potential, MSA for attractive potential) at short distances [20]. This phenomenological
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equation imposes the thermodynamical self-consistency by construction and modifies the
HNC closure in the correct direction [21]. Other attempts consisted in approximating the
bridge function by its first diagram in the density expansion [22]. The success of the resulting
HNCB equation is restricted to low coupling, as expected. A different class of advanced
closure uses the formalism of the multidensity cluster expansion for associating particles and
separates the colloid–counterion potential into two parts, a strongly attractive part responsible
for the association and a non-associative part [23].

In the present study, we apply the improved integral equation proposed by Barrat, Hansen
and Pastore (BHP) [24] to the salt-free, binary PM of colloid–counterion systems. The density
functional formalism of inhomogeneous fluids expresses the bridge function in terms of N-
body (N > 2) direct correlation functions c(N). Using a factorization ansatz for c(3) and the
exact relation between c(3) and the density derivative of c(2), BHP have derived a simple and
tractable closure, which has proven to be accurate for simple monodisperse fluids [24]. We
show in this paper that the BHP integral equation remains powerful in the asymmetrical PM
and successfully improves the HNC data in terms of self-consistency and when compared with
simulation data.

2. Theory

The binary system is composed of polyions (p) of number charge Z p and density ρp and
counterion (c)(Zc, ρc). The electroneutrality condition imposes Z pρp + Zcρc = 0. ρ = ρp+ρc

is the total density. The pair potential vi j (r) between species i and j contains the long-range
1/r coulombic contribution and the short-range, hard or soft, repulsion:

βvi j (r) = βvS R
i j (r) + Zi Z j L B/r; (1)

β = 1/(kT ), L B = e2/(4πε0εkT ) is the Bjerrum length and ε is the dielectric constant of the
solvent. For hard-sphere particles of diameter σi ,

βvS R
i j (r) =

{
+∞; r < σi j = (σi + σ j )/2

0; r > σi j .
(2)

The calculation of the pair distribution functions gi j(r) starts with the multi-component
Ornstein–Zernike (OZ) equation which relates total hi j = gi j −1 and direct ci j pair correlation
functions [14]:

hi j (r12) = ci j(r12) +
∑

k

ρk

∫
hik(r13)ck j (r32) dr3. (3)

The formally exact closures read

gi j = exp[−βvi j + hi j − ci j + bi j ] (4)

where the bi j represent the bridge functions. The HNC approximation consists of neglecting
these functions, bi j = 0. The first renormalized bridge diagram reads [14]

bi j(r12) ≈ 1
2

∑
k,l

ρkρl

∫ ∫
hik(r13)hil(r14)h jk(r23)h jl(r24)hkl(r34) dr3 dr4. (5)

This approximation for bi j defines the HNCB closure [22].
A better approximation for the bridge functions, valid on a wider range of coupling,

involves the three-body direct correlation functions [24, 25]:

bi j(r12) ≈ 1
2

∑
k,l

ρkρl

∫ ∫
hik(r13)hil(r14)c

(3)
jkl(r23, r24) dr3 dr4. (6)



Colloid–counterion mixtures 9327

This expression is the first term in a systematic expansion within the density functional
formalism of inhomogeneous fluids. Exact relations relate the partial integrals of the c(3)

i jk
to the partial density derivatives of ci j :∫

c(3)
i jk(r12, r13) dr3 = ∂ci j(r12)

∂ρk
. (7)

In order to obtain an accurate but tractable theory, BHP have proposed to factorize the three-
body functions c(3)

i jk in [24]:

c(3)
i jk(r12, r13) = ti j,k(r12)tik, j (r13)t jk,i (r23). (8)

This approximate factorization ansatz verifies required symmetry relations. The new functions
ti j,k(r) are derived from the relations (7):

ti j,k(r12)

∫
tik, j (r13)t jk,i (r23) dr3 = ∂ci j(r12)

∂ρk
. (9)

The new bridge functions become

bi j(r12) ≈ 1
2

∑
k,l

ρkρl

∫ ∫
hik(r13)hil(r14)t jk,l(r23)t jl,k(r24)tkl, j (r34) dr3 dr4. (10)

Equations (4) and (10) with relations (9) define the BHP closure. With the simple
approximation ti j,k = hi j asymptotically valid at zero density, equation (10) coincides with (5)
and one recovers the HNCB closure.

For binary systems, the three pair distribution functions gpp, gpc and gcc require the
calculation of six functions ti j,k . Note the a priori difference between ti j,1 and ti j,2.
Equations (9) involving t11,1 and t22,2 are independent, those involving t11,2, t12,1 on one side
and t22,1, t12,2 on the other side are coupled two by two [24].

The complete BHP resolution for a given set of pair potentials is the following.

(i) Starting from imposed functions bi j, the equations (4) with the OZ equations (3) (expressed
in Fourier space) are solved using the standard iterative process [15, 21]. At this stage,
this is equivalent to solving HNC with the potentials vi j − kT bi j . Extensive use is made
of the powerful Newton–Raphson techniques proposed by Zerah [26].

(ii) The partial derivatives ∂ci j/∂ρk (i, j = p, c) are obtained by explicitly differentiating the
previous cycle with respect to the density ρk . The technique detailed in appendix A is
equivalent to that used for the numerical derivation of the virial compressibility [21].

(iii) The six functions ti j,k are calculating by solving the six equations (9) using steepest-descent
and conjugate gradient methods (appendix B).

(iv) The sixfold integrals in the bridge function expressions (10) are routinely reduced to sums
of double integrals by Legendre polynomial expansions [27].

(v) With the new estimates of bi j , the cycle is repeated again at stage (i). The process is
iterated until convergence is reached.

A few remarks on this iterative resolution: in general, the first iteration is started with
bi j = 0 (HNC solution). In cases where HNC has no solution for the state under study,
one starts with the bridge functions of a close previously solved state. During step (ii), the
dependence of bi j on ρk is neglected for simplicity. The calculation of the ti j,k during step (iii)
is the most sensitive part in the resolution. The structure of equations (9) induces intrinsic
problems of convergencediscussed in appendix B. Contrary to equation (5) and, less obviously,
to equation (6), the BHP approximation (10) for bi j loses its required symmetry in i j . This
means that the calculation of bpc and bcp in step (iv) gives two different bridge functions,
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which is not satisfactory. Thus, the symmetry has been imposed by choosing (bpc + bcp)/2
for the cross bridge function. Lastly, the convergence is usually obtained with one or two
iterations. In some particular cases where the starting function bi j is far from the final one,
the resolution may converge more slowly with some oscillations. Interpolation of successive
functions speeds up the convergence.

Once the convergence is reached, the pressure P as well as the normalized isothermal
compressibility χ = ∂ρ/∂(β P) are derived from the virial equation [14]. In order to check the
thermodynamical consistency of the theory, this value χv of χ is compared with the value χc

deduced from the compressibility equation which involves the partial structure factors Si j(q)

at the origin q = 0 (Z ≡ |Z p/Zc|):
χ = (Z + 1)Spp(0) = (Z + 1)/Z Scc(0). (11)

Within the BHP approximation for the c(3) and b functions, an explicit expression for the excess
chemical potentials in terms of the pair correlation functions is conserved [28]:

βµexc
i =

∑
j

ρ j

∫
[hi j(r)(hi j(r) − ci j(r))/2 − ci j(r)] dr

+
∑

j

ρ j

∫
bi j(r)[1 + 2/3hi j(r)] dr. (12)

The colloid pair correlations described by gpp(r) and Spp(q) can be advantageously illustrated
in terms of the effective, ion-averaged pair potential v

e f f
pp (r) [13, 17, 29]. By definition, this

potential leads, within a one-component approach, to the same pair colloidal correlations as
within the PM, at identical temperature and colloidal density [30]. The extraction of v

e f f
pp (r)

requires the inversion of the integral equation problem in the one-component model:

βve f f
pp = h pp − ce f f

pp − ln gpp + bef f
pp . (13)

The function ce f f
pp is easily deduced from Spp through the one-component OZ equation

expressed in Fourier space. In principle, the approximation chosen for the one-component
bridge function bef f

pp must be consistent with that previously used in the binary PM. In the
HNC approximation, bef f

pp = 0. In the HNCB approximation, bef f
pp (r) is given by the unique

diagram i = j = k = l ≡ p in (5). Within the BHP approximation, bef f
pp is not known a priori

and must be determined by iteration: from a first estimate, the effective potential is derived
with (13). The one-componentBHP equation is then solved for that potential in order to deduce
the te f f

pp function and the new estimate of bef f
pp . Two iterations are generally sufficient.

3. Results

We first investigate the reference system in the micellar regime, T = 298 K, ε = 78,
Zi = +1/−40, σi = 5/50 Å, ρi = 0.1/0.0025 M (≈10% in volume fraction), previously
studied extensively with HNC and ZH [15, 21]. Figures 2–4 present the BHP gi j , ti j,k and
bi j functions, respectively. The pair distribution functions reveal a classical behaviour in such
a colloid–counterion system: the strong coulombic attraction between oppositely charged
objects induces an ionic accumulation or condensation in the vicinity of the polyions, seen in
the peak of gpc near contact and in the characteristic shape of gcc. The gpp curve is a priori
consistent with a three-dimensional liquid order and a purely repulsive effective interaction
between colloids. The ti j,k functions present much more complex structures than their
asymptotic values hi j . Moreover, ti j,p differs from ti j,c for the three pairs i, j . The resulting
bridge functions take negative values, which means that the BHP theory, compared with HNC,
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Figure 2. Pair distribution functions gi j (r) for the +1/−40 system. T = 298 K, ε = 78,
σi = 5/50 Å, ρp = 0.0025 M. BHP equation.

should weaken the ionic condensation and ion–ion correlations inside the condensation shell
and strengthen the effective colloidal repulsion. As said in the introduction, this is the needed
and expected trend to improve the HNC data. This is confirmed in figures 4–7, where the HNC,
HNCB, ZH and BHP results are compared for bi j(r), gi j(r), Si j(q) and v

e f f
pp (r), respectively.

The corresponding thermodynamical quantities are given in table 1. The particular HNC
behaviour is clearly identified: the strong ionic condensation and the absence of the polyion–
polyion bridge function induces a somewhat weak effective repulsion at short distance and the
presence of an effective attraction at intermediate distance [17]. The high values Si j(0) of the
partial structure factors at q = 0 mean a severe inconsistency between compressibility and
virial routes for the pressure [15]. The first bridge diagrams (5) of the HNCB approximation,
shown in figure 4 for comparison, are much smaller than the BHP ones, especially for bpp,
and bring minor corrections to HNC. The attractive contribution has disappeared in the HNCB
effective potential but the disagreement between χc and χv remains. On the other hand, the BHP
curves present a stronger three-dimensional liquid order among the colloids (gpp in figure 5)
with a peak higher and localized at larger distance than for HNC or HNCB. Equivalently, the
effective potential presents an enhanced repulsion in figure 7 and the Si j(0) values are lower in
figure 6. The resulting BHP thermodynamical consistency in table 1 is much better and almost
perfect when the density dependence of the bridge function is partially taken into account (see
appendix A). Lastly, the phenomenologicalZH approximation which imposes self-consistency
by adjusting the parameter of mixing between HNC, PY, MSA closures (ZHb version [21])
presents results surprisingly close to the BHP advanced theory.

The next systems, T = 298 K, ε = 78.4, Z p = −20, σi = 4/30 Å, again in the nanometric
regime, have been studied by different groups with MC simulation for two colloidal densities,
ρp = 0.01 and 0.02 M (≈8.5 and 17% in volume fraction) and two counterion valences
Zc = +1 and +2 [10]. Figures 8 and 9 display the polyion–polyion pair distribution functions
for the monovalent and divalent cases, respectively. For the +1/−20 concentrated case, the
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Figure 3. BHP functions ti j,k (r). The same system as for figure 2.

Figure 4. Bridge functions bi j (r). The same system as for figure 2. HNCB, ZH and BHP equations.

peak height and position have been improved going from HNC to BHP, as compared with
the MC data. The HNC self-inconsistency (χc = 0.69, χv = 0.96) is corrected with BHP
(χc = 0.94, χv = 0.80/0.90). A slight shoulder appears on the right of the main peak of
gpp(r), which becomes more apparent in the effective potential curve v

e f f
pp (r) (inset in figure
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Figure 5. Pair distribution functions gi j (r). The same system as for figure 2. HNC, HNCB, ZH
and BHP equations.

Figure 6. Partial structure factors Si j (q). The same system as for figure 2. HNC, HNCB, ZH and
BHP equations.

8). This is due to a small positive peak in the bridge function bpp(r) at these distances. Due to
the spreading in the MC data1, no definite conclusion can be made about the relevance of this
BHP shoulder. For the +1/−20 dilute case, the HNC equation has no solution (the system lies
inside the HNC liquid–gas region), while the BHP equation presents a fair agreement with MC
(χc = 1.75, χv = 1.34/1.50). Note that the present colloidal system with charge asymmetry
+1/−20 is counter-intuitively more coupled than the +1/−40 case investigated before. This is

1 The different papers listed in [10] do not present exactly the same MC gpp(r) curves. The data given in figures 8, 9
are those of Hribar and Vlachy.
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Figure 7. Effective, ion-mediated colloid–colloid potential v
e f f
pp (r). The same system as for

figure 2. HNC, HNCB and BHP equations. The effective potential is extracted using the same
closures within the one-component model.

Table 1. Normalized compressibility χ from compressibility ‘c’ and virial ‘v’ routes, osmotic
coefficientβ P/ρ, polyion–counterion pair distribution function at contact gmax

pc , post-condensation,

effective charge Zef f
p and excess chemical potentials βµexc

i .

Equation χc χv β P/ρ gmax
pc Zef f (c)

p βµexc
c βµexc

p

HNC 2.41 1.26 0.602 8.72 −20.1 0.604 −201.7
HNCB 1.94 1.25/1.28a 0.597 8.70 −19.7 0.598 −201.8
ZHb 1.45 1.45 0.475 7.65 −21.3
BHP 1.40 1.30/1.40a 0.570 8.46 −20.4 0.601 −203

a The two values for χv are calculated with ∂bi j /∂ log(ρ) = 0 and 2bi j , respectively (see
appendix A).
b The version of ZH chosen here is the version ZHb of [21] (αi j = cte = 0.075 Å−1).
c The value of the effective charge is extracted from the colloid– counterion profile according
to [15].

due to the fact that the colloid is smaller (30 instead of 50 Å in diameter), leading to stronger
ion–ion correlations. In the presence of divalent counterions, both HNC and BHP correctly
reproduce the MC pair colloidal correlations for the concentrated system. The shape and peak
position of gpp(r) in figure 9 are completely different from their counterparts in figure 8. The
effective potential mediated by the counterions now presents a clear attraction at intermediate
separation (inset in figure 9). This behaviour is emphasized for the dilute +2/−20 system.
Neither HNC nor BHP have a solution. Starting from the dilute +1/−20 case and continuously
increasing the ionic valence, the BHP equation loses its solution around Zc = 1.9. This means
that the dilute +2/−20 lies just inside the BHP two-phase region. In the same way, the MC data
present a very unusual gpp function, which means that some kind of phase transition happens
near this state.
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Figure 8. Polyion–polyion pair distribution functions gpp(r) for the +1/−20 system. T = 298 K,
ε = 78.4, σi = 4/30 Å, ρp = 0.01 and 0.02 M. MC data [10]. HNC and BHP equations. Inset:

effective potential v
e f f
pp (r) extracted using the same closures within the one-component model.

Figure 9. The same as for figure 8 for the +2/−20 system.

4. Conclusion

The BHP integral equation proposed by Barrat, Hansen and Pastore greatly improves the
HNC results for the PM of colloid–counterion mixtures. The BHP bridge function differs
considerably from the first bridge diagram. The liquid–gas domain in the phase diagram,
related to an ion-averaged effective attraction between colloids, is shifted to higher coulombic
coupling. The main formal advantage of this advanced closure is that its bridge function
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approximation has been derived from a fundamental and systematic analysis involving high-
order direct correlation functions, valid for any interaction potential. This should be compared
with phenomenological equations such as ZH or ‘reference’ or ‘modified’ HNC, which mix
simple closures with one or many adjustable parameters or make a priori assumptions about
a possible universality of the bridge functions. For the highly asymmetrical PM, the BHP
analysis should be continued following different directions.

(i) The determination of the ti j,k functions is the crucial step in the numerical process.
Alternative ‘easier’ choices for the BHP prescription should be derived and tested.

(ii) During the calculation of the ∂ci j/∂ρk derivatives, the density dependence of the bridge
functions, ignored for the moment, should be investigated.

(iii) Lastly, the study of higher coulombic coupling should allow us to determine the precise
location of the phase transition in the phase diagram.

Work on these points is in progress.

Appendix A

A.1. Determination of the ∂ci j/∂ρk derivatives

The derivative of the OZ equation (3) with respect to the density ρk gives

∂hi j

∂ρk
= ∂ci j

∂ρk
+ hik ⊗ ck j +

∑
l

ρl

(
∂hil

∂ρk
⊗ cl j + hil ⊗ ∂cl j

∂ρk

)
(A.1)

where the symbol ⊗ represents a convolution product. If we denote by ĥi j(q) the Fourier
transform (FT) of hi j (r) normalized by the density factor (ρiρ j)

1/2 and by Ĥ (k)

i j (q) the

similarly normalized FT of H (k)
i j (r) = ∂hi j(r)/∂ log(ρk) (with equivalent definitions for ci j),

the OZ equations (3) and the equations (A.1) become in Fourier space and matricial notation,
respectively

S = (1 + ĥ) = (1 − ĉ)−1 (A.2)

Ĥ (k) = SĈ(k)S + u(k)S. (A.3)

The matrix S is composed of the partial structure factors Si j = δi j + ĥi j . The element i j of
the matrix u(k) is ĥik ĉk j . It should be noted that the infinite range of the coulombic potentials,
or equivalently the fact that it is impossible to vary the polyion and counterion densities
independently, induces a q−2 divergence in the matrices ĉ, Ĉ(k) and û(k) at the origin q = 0.
As usual, this divergence disappears in the product of these functions with S thanks to the
electroneutrality condition. For example, the element i j of the product u(k)S is ĥik ĥk j .

The derivative of the integral equation (4) reads

H (k)
i j = gi j(H (k)

i j − C (k)
i j + B(k)

i j ). (A.4)

Since bi j is a given function during this step, no information is known about its density partial
derivatives. For simplicity, we neglect this higher-order effect, B(k)

i j = 0.
The linear system (A.3), (A.4) is solved by iteration using the same Newton–Raphson

techniques as for the integral equation resolution [21]. The convergence is obtained in fewer
than ten iterations. This procedure, repeated for k = p and c, gives all desired functions
C (k)

i j = ∂ci j/∂ log(ρk).
When one needs to calculate the derivatives of the correlation functions with respect to the

total density ρ, at constant composition, the superscript (k) is dropped from equations (A.3)
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and (A.4) and the matrix uS becomes ĥ2. The functions Hi j , when introduced into the
derivative of the virial equation, give the virial compressibility χv = ∂ρ/∂(β P). In this case,
it is possible to investigate the effect of the ρ-dependence of the bridge functions by comparing
the value of χv obtained with Bi j = 0 with that obtained with Bi j = 2bi j (quadratic dependence
on ρ).

Appendix B

B.1. Determination of the function t11,1 (same procedure for t22,2)

If we denote ∂c11(r)/∂ρ1 by C1(r) and t11,1(r) by T1(r), the first equation (9) becomes

T1(T1 ⊗ T1) = C1. (B.1)

The numerical problem is here identical to that faced in one-component systems [24]. The
idea is to minimize by iterations the functional

f [T1] = 1
2

∫
[D1(r)]2 dr ≡ 1

2

∫
[C1 − T1(T1 ⊗ T1)]

2 dr (B.2)

with respect to T1(r).
In the steepest-descent method, the (n + 1)th iteration estimate is chosen in the direction

T (n+1)

1 = T (n)

1 + λg(n) (B.3)

where the gradient of f is given by

g ≡ −δ f/δT1 = D1(T1 ⊗ T1) + 2(D1T1) ⊗ T1. (B.4)

The parameter λ is chosen so as to minimize f �T (n+1)

1 �.
The speed of convergence in this method is greatly improved by introducing conjugate

gradient techniques [31].

B.2. Determination of the couple of functions t11,2, t12,1 (same procedure for t22,1, t12,2)

Note t11,2, t12,1 by T2, T3 and ∂c11/∂ρ2, ∂c12/∂ρ1 by C2, C3. The two coupled equations (9)
read

T2(T3 ⊗ T3) = C2 (B.5)

T3(T2 ⊗ T3) = C3. (B.6)

The functional to minimize becomes

f [T2, T3] = x2

2

∫
[D2(r)]2 dr +

x3

2

∫
[D3(r)]2 dr ≡ x2

2

∫
[C2 − T2(T3 ⊗ T3)]2 dr

+
x3

2

∫
[C3 − T3(T2 ⊗ T3)]

2 dr (B.7)

where x2 and x3 = 1 − x2 are positive free coefficients adjusted to optimize the convergence.
The partial gradients are

g2 = −δ f/δT2 = x2 D2(T3 ⊗ T3) + x3(D3T3) ⊗ T3

g3 = −δ f/δT3 = x3 D3(T2 ⊗ T3) + x3(D3T3) ⊗ T2 + 2x2(D2T2) ⊗ T3.
(B.8)

Again, the steepest-descent method, which consists in choosing

T (n+1)

2 = T (n)

2 + λg(n)

2

T (n+1)
3 = T (n)

3 + λg(n)
3

(B.9)
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with λ adjusted so as to minimize the running value of f , is coupled with powerful conjugate
gradient techniques.

The procedure described above works without difficulty and in fewer than a few tens of
iterations for low to moderate coupling. At higher coupling (high valences in the present
study), the functions ti j,k differ considerably from their asymptotic forms hi j and the iterative
minimization procedure may be lost in unphysical local minima. This especially happens
when, at some stage, the convolution products in (B.1) or in (B.5), (B.6) present zeros for
some distances r where the functions C do not vanish. The incorrect reaction of the numerical
process is to construct diverging functions T at these distances. In these cases, an efficient
procedure consists in using careful damping in r and q spaces at each iteration, starting from
strong damping and progressively releasing the constraint. This allows us to escape most of
the problems and to reach a reasonable, although not perfect, convergence. The reason for
this absence of perfect resolution seems to be less a possible failure of the chosen numerical
integration techniques than the mathematical form of the BHP definition itself. For an exact
determination of the ti j,k functions, as exact as in the resolution of the integral equation or in
the bridge function calculation, a modified, less constraining version of the BHP prescription
should be derived.
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